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Abstract--This work introduces a reactive agent architecture 
based on the subsumption scheme incorporating communica-
tion abilities as a basic behaviour block. The aim is to study 
and evaluate the emerging collective behaviours and the role 
of indirect communication in reactive agent societies situated 
in highly dynamic environments. A series of experiments are 
presented, focusing at the optimisation of the basic behaviours 
synthesis and the exploitation of the indirect communication in 
collectively performed tasks. The experiments are conducted 
with the simulation of swarm systems applied to a real-life 
scenario of the industrial segment.  
 
Index terms-- emergent behaviours, indirect communication, 
reactive agents, subsumption architecture. 
 

I. INTRODUCTION 
Swarm Intelligence (SI) offers an alternative way of design-
ing intelligent systems, in which autonomy, emergence, and 
distributed functioning replace control, pre-programming, 
and centralization. SI is defined as the emergent collective 
intelligence of groups of simple agents, or in more detail, SI 
is the property of a system whereby the collective behav-
iours of (unsophisticated) agents interacting locally with 
their environment cause coherent functional global patterns 
to emerge [1]. The SI approach emphasizes parallelism, 
distributedness, and exploitation of local interactions 
among relatively simple agents and the environment they 
belong to. 
Communication is one of the most common means of inter-
action among intelligent agents. Direct communication is a 
purely communicative act, one with the sole purpose of 
transmitting information, such as a speech act, or a trans-
mission of a radio message. Although direct communication 
is a natural way to communicate, it needs specific mecha-
nisms and protocols to send, receive, and interpret any sig-
nals or messages, and in most cases it needs increased com-
putational resources. On the other hand, in natural systems 
as insect societies any observable behaviour and its conse-
quences can be interpreted as a form of communication, and 
could be considered as an indirect communication act. This 
type of communication is referred to as stigmergic in biol-
ogy literature, as it refers to communication by altering the 
state of the environment in a way that will affect the behav-
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iours of the others for whom the environment is a stimulus 
[4]. This means that the environment serves as a medium of 
communication.  
This type of communication could be applied to an artificial 
swarm system consisting of micro scale, unsophisticated 
agents with limited computational capabilities. As Bona-
beau et al. notice in [1], stigmergy contributes in a number 
of ways: 
• In problem solving where the replacement of coordina-

tion through direct communications by indirect interac-
tions helps the design of simple agents and reduced 
communication among agents. 

• In incremental construction and optimization where a 
new solution is constructed from previous solutions. 

• In flexibility where, because the changes of the envi-
ronment are treated in a similar way no matter whether 
they come from physical or communication actions, the 
agents need not be reprogrammed to deal with any par-
ticular change. 

The basic factor that influences the complexity of an agent 
is the type of the environment on which it is situated and 
interacts with in order to achieve its objectives. According 
to [5] the most complex environment is the one that is char-
acterised as inaccessible, non-deterministic, non-episodic, 
dynamic, and continuous.  
The agent architecture is a fundamental issue as its main 
role is to provide the necessary interaction between an 
agent and its environment: receive the environment sensory 
perception input and pass it to the agent’s program, execute 
the program and activate the appropriate effectors to change 
the environment. Because the symbolic approach of agents 
in classic AI wasn’t adequate when they had to operate in 
highly environments with time restrictions, the nouvelle AI 
researchers proposed alternative approaches for the con-
struction of agents that respond in a timely fashion to their 
environment changes, so as their actions to have the ex-
pected results. These unsophisticated agents are referred to 
the literature as simple reflex agents [5], or purely reactive 
agents [7], thought the latter are more hardware oriented.  
The “subsumption architecture” of reactive agents that was 
introduced by R. Brooks [2] [2], did not adopt symbolic 
representation, nor reasoning mechanisms. The two main 
characteristics of this architecture are: a) an agent’s deci-
sion making procedure is realized by a set of task accom-
plishing behaviours, each one can be considered as an ac-
tion function and b) more than one behaviours can be trig-
gered simultaneously, so a selection mechanism of multiple 
action proposals must be present. Brooks proposed the ar-
rangement of behaviours in a subsumption hierarchy, where 
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lower behaviours in hierarchy can suppress the higher ones. 
The advantages of reactive architectures are: simplicity, 
computational tractability, economy, robustness against 
failure and elegance [7]. 
The aim of this work is to study and evaluate the role of 
indirect communication (a kind of stigmergy) in the per-
formance of reactive agent societies. As the computational 
resources of such type of agents are limited, the overhead of 
the communication capability is a critical issue. So, we in-
troduce a subsumption agent architecture that embodies the 
communication capability as a basic behaviour allowing the 
synthesis of complex behaviours and requires no additional 
mechanisms or protocols; instead, it deals with communica-
tion signals as changes of the environment the agent is situ-
ated in. A performance comparison between agent societies 
with and without communication ability is presented. Addi-
tionally, issues and situations that boost or reduce the per-
formance of the indirect communication approach are 
noted. This is accomplished through several test case simu-
lations for both approaches on a simulated multi agent envi-
ronment.  
The next section introduces the case study we were based 
upon to develop our work and the approach we adopted. 
The section III describes the simulation environment with 
brief reference to user interface parameterization, including 
the agent behaviours, indirect communication protocol, 
agent’s architecture, the simulation branch appearance de-
scription, with a special reference to important functioning 
details. The section IV details on the experiment scenarios, 
evaluation criteria and the results taken by relevant evalua-
tion test cases. Finally, the section V discusses the results 
and the conclusions derived by the experiments and sets 
new issues for further investigation  

II. CASE STUDY 
In order to study, evaluate and exploit the collective phe-
nomena which emerge from local actions of large groups of 
elementary agents activated in non-deterministic and dy-
namic environments, we dealt with the following subject 
[6]: 
“A society consisted of enough population of elementary 
autonomous robotic agents is activated in a dynamic envi-
ronment having as an objective the diagnosis and repair 
some problematic situations. The agents have specific and 
limited capabilities of perceptions and actions, low reason-
ing calculating resources and memory. More specifically 
they perceive limited number of environment stimuli and 
react in predetermined way to that. Their capabilities coded 
by a total of basic behaviours. They do not communicate 
directly, but a potential collective action emerges through 
local interaction with the rest members of community.” 
The main objectives include the following: 
• The basic behaviours encoding and their integration in a 

suitable architecture schema; 
• The creation of an indirect communication mechanism; 
• The development of a simulation environment (imple-

mented using Java3D platform); 
• The study of the emerging collective phenomena 

through a set of experiments; and 

• The comparative evaluation of the society performance 
using test case scenarios. 

To fulfil these objectives we dealt with a problem of the 
real world based on a hypothetic scenario [6]: 
“In the process of secondary production of petroleum prod-
ucts, pipes are used for the regulation of level of water as 
well as a pumping system, using heater treatment units to 
separate the two liquids (water & petroleum). The techno-
logical problem it faces is the salt sediments which are ac-
cumulated on the pipe walls (Fig. 1) and they might cause 
obstructions and damages on the pumping system.”   

 
Figure 1: Fault Creation 

The approach we adopted from Software Engineering point 
of view is based on “Swarm Intelligence” approach of 
emergent “social” intelligence and from Technical point of 
view based on multi-agent systems and the subsumption 
agent architecture. The reasons we adopted this approach 
are: simplicity, economy, robustness against failure, ele-
gance, impressive results in many applications and suitabil-
ity for dynamic & non-deterministic environments. 
A solution to the case study we described is to place a large 
enough robotic homogenous agent population into the fluid 
environment: tiny sized agents, with low consumption and 
computational power and naturally low cost. Each agent is 
supplied with a perception system (infrared, pH changes, 
and static and moving obstacles recognition sensors), reac-
tive subsumption architecture (with a basic behaviour hier-
archy), a small memory and an actuation system (submarine 
navigation, transceiver system and a chemical compound 
load).  
The agents are moving randomly in the fluid environment 
sensing the pH variations by their sensors trying to find pH 
disturbances, to reach stochastically the faults, dock and 
repair them. The environment can be supplied with refuel 
stations so as the agents with low vital status can be refu-
elled. The efficiency of system will be evaluated with or 
without indirect communication 

III. AGENT ARCHITECTURE AND SIMULATION 
ENVIRONMENT 

For the purposes of this study, we designed and developed a 
standalone multi-agent simulation application running un-
der Windows systems, using GUI for user interface and 
Java3D platform for the simulation environment. 
We analyzed and coded basic and complex behaviours and 
arranged them in a subsumption architecture scheme. We 
also implemented a realistic resource-bounded communica-
tion protocol. The main frame of simulation system (Fig. 7) 
consist of a set of buttons to start, stop a simulation, set the 
system properties and simulation scene appearance and a 
set of simulation statistics on a vertical bar on the left side 



of the main frame and the 3D simulation scene on the main 
body. Also we give a brief reference to interesting function-
ing details.  
The user interface we developed covers a great deal of 
simulation parameterization concerning: 
• Agents: population, agent’s size, chemical compound 

load, battery charge, communication, etc. 
• Compound: Fault sphere (range, fault units), Signal 

Sphere (range, life, hop threshold) and Station (range, 
known or unknown location indicator, etc) properties  

• Behaviour properties: enabling distances, etc. 
• Architecture construction (Fig. 5). 
• Environment related information: tank & pipe dimen-

sions and volume, free space, faults and signals envi-
ronment percentage of occupation, etc. 

All these parameters can be set in the corresponding tapped 
panes in the “Properties” panel (Fig. 2).  

 
Figure 2: Agent properties tapped pane 

Furthermore, all simulation default object attributes can be 
changed from the UI of the application, by pressing the 
button “Appearance” (Fig. 3). 

 
Figure 3: Simulation objects appearance change panel 

A. Behaviours 
Initially, we analyzed and coded the basic and complex 
behaviours of the individual agent. These are related to 
movement, task accomplishment, communication, and 
emergent behaviours. 

1) Movement behaviours 
These behaviours are responsible for the navigation of the 
agent either as an individual or as a member of a broader 
group and are the following. 
Wander: No perception input needed. Calculate a random 
position to move in 3D space. It is activated if no other be-
haviour gives output (suppressed by all others). The veloc-
ity is calculated randomly between the min and max de-
fined. 
Avoid Obstacles: Allows agents to avoid collisions with 
static obstacles (walls or pipes). It is activated when static 
obstacles are sensed within behaviour enabling distance and 
gives as an output a turn upon nearest obstacle position to 
move. The velocity is adjusted depending of the distance 
from the nearest obstacle (slow down or accelerate).  
Avoid Kin: Allows agents to avoid collisions with other 
agents. It is activated when nearby agents are sensed and 
are within behaviour enabling distance. The behaviour 
gives as an output a turn upon nearest kin position to move. 
The velocity is adjusted depending on the distance from the 
nearest agent (slow down or accelerate). 
Follow Kin: Allows agents to follow other agents in the 
local surrounding. It is activated when nearby agents are 
sensed within behaviour enabling distance and the “eye” 
angle is less than 90o. The behaviour gives as an output the 
next position to move. The velocity is adjusted trying to 
keep a safe distance from leader (slow down or accelerate). 
Align: Allows agents to align their direction vector with 
other agents in their local environment. It gives as an output 
a direction vector which is the normalization of sum of all 
vectors of agents within the behaviour enabling distance:  
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Aggregate: Allows an agent to move to a direction so as to 
be part of a group. It gives as an output a position to move 
which is the centroid of positions of agents within the be-
haviour enabling distance: 
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The velocity is adjusted depending on the distance from the 
centroid (slow down while reaching the centroid). 
Disperse: Allows agents to move to a direction so as 
groups are split and agents spread all over the environment. 
It’s the opposite behaviour of aggregate and agents try to 
avoid the centroid. The velocity is adjusted depending on 
the distance from the centroid (accelerate while going away 
from centroid). 
All these behaviours obey to the constraints that the posi-
tion proposes to an agent to move: 
• Must not exceed a turning angle (angle between current 

and new direction vector) of 45o and 
• The velocity distance (distance between current and new 

position to move) must not exceed the maximum veloc-
ity distance defined in UI. 
2) Task accomplishment behaviours 

These behaviours are related to the tasks an agent individ-
ual can perform and they are placed in a higher priority than 



the movement behaviours in the subsumption scheme, as 
they reflect the reason the agent has been constructed for as 
well as the “self-preservation instincts” of the agent.  
Search Station: Activated only when an agent’s vital status 
is low. Agent tries to find a refuel station. Refuel stations 
positions might be known or transmit a specific signal. In-
cludes embedded behaviours: 
Docking Align: Activated when a predefined distance from 
a station reached (if station positions are known) or a prede-
fined intensity of station signal sensed (if station positions 
are unknown). It gives as an output a direction vector so as 
the agent to align its back vertically to the station, using the 
agent’s current direction vector, the nearest obstacle posi-
tion and station position (if known) or station signal (if un-
known). A predefined maximum rotation angle per activa-
tion allowed.  
Docking Approach: Activated when the docking align-
ment to a station completed. It gives as an output a position 
to move backwards, using the distance from nearest obsta-
cle and the distance from the station (known position) or the 
station signal (unknown position) until the final dock.  
Refuel: When the docking procedure is completed, the 
agent starts to recharge its batteries and to reload with the 
chemical compound it carries for repairing. This behaviour 
gives output until batteries are fully recharged and chemical 
compound is fully reloaded. 
Search Fault: Activated when pH disturbance is sensed. 
The agent tries to move stochastically to the fault by sens-
ing the pH variations. If the current pH value is greater than 
previous one sensed (means that an agent is closer to a 
fault) then the agent maintains course otherwise it tries to 
return to previous position. 
Docking Align: Activated when a predefined pH distur-
bance is sensed. It gives as an output a direction vector, so 
as the agent to align its back vertically to the fault, using the 
agent’s current direction vector and the nearest obstacle 
position. A predefined maximum rotation angle per activa-
tion allowed. 
Docking Approach: Activated when the docking align-
ment to a fault completed. It gives as an output a position to 
move backwards, using the pH variations sensed and the 
distance from the nearest obstacle until a predefined mini-
mum dock distance from nearest obstacle reached. 
Repair: When the docking procedure is completed, the 
agent starts to release a chemical substance which decom-
poses the salt sediments. This behaviour gives output until a 
fault completely repaired or the agent’s load becomes 
empty. 

3) Indirect communication behaviour 
This type of behaviour is essentially a movement behav-
iour; however, it is triggered by different type of input sig-
nals, i.e., by signals perceived be the RF sensors. 
Stigmergic Move. It is activated when a fault reported sig-
nal is sensed by an agent and gives as an output the position 
to move so as the agent will move towards the most impor-
tant signal in its effort to reach faults.  

4) Complex behaviour 
This behaviour is the result of the synthesis of other basic 
behaviours (Fig. 6) and it is placed in the highest priority in 

the subsumption scheme, as it is responsible for the agent 
safety during navigation.  
Safe Wander: It is a complex behaviour which combines 
the basic behaviours Avoid Obstacles and Avoid Kin. If both 
of them give output then Safe Wander gives as an output a 
turn upon the centroid of outputs position to move. 

B. Indirect communication protocol 
We designed an algorithm and implemented a non-
demanding indirect communication protocol due to agent 
resource limitations. This protocol is based on the wireless 
protocol IEEE 802.15.4 (ZigΒee). In our model we consider 
that an agent may be in one of three distinct states (Fig. 4):  
• Wandering: An agent is wandering (not with the mean 

of the Wander behaviour) in the environment without 
sensing any pH disturbance. 

• Fault_Sensed or Station_Sensed: An agent has sensed 
a fault via its pH sensors or a station signal via its trans-
ceiver. 

• Fault_Reported or Station_Reported: An agent has 
sensed via its transceiver a fault or station reported sig-
nal. 

Each signal has the following parameters: 
• HopCount: Indicates the importance of the signal. A 

zero value indicates that an agent directly sensed a fault 
or station; values so indicate how far an agent is from a 
fault or station and  

• HopThreshold: An agent which receives a signal with 
HopCount value greater than HopThreshold value, does 
not retransmit the signal (namely the maximum level of 
signal retransmission). 

We have distinguished two cases depending on the vital 
status of the agents. An agent’s vital status is “Active” 
when its battery charge is above “low battery alert” and has 
enough chemical substance cargo, otherwise is “Hungry”. 
Case 1: The vital status of the agent is “Active” 
Initially an agent is in the Wandering state. If it directly 
senses a fault, then enters in Fault_Sensed state and starts to 
transmit signal with HopCount=0. If it stops sensing a fault, 
then it returns to Wandering state. If it senses fault report-
ing signals then enters in Fault_Reported state and tries to 
follow the most important signal (with the less HopCount 
and if there are more than one, the one with the highest in-
tensity) while retransmits it increasing the received Hop-
Count by one. If while it is in Fault_Reported state and 
directly senses a fault, then enters in Fault_Sensed state and 
if it stops sensing any fault reported signals returns to Wan-
dering state. 
The Fault_Sensed state is implemented by the SearchFault 
behaviour, which when it gives output (the agent sensed 
fault) except the position to move propose the agent to 
transmit a Fault_Sensed signal (HopCount=0). 
 The Fault_Reported state is implemented by the Stigmer-
gicMove behaviour, which when it gives output (the agent 
sensed fault reported signal) except the position to move 
propose the agent to retransmit the Fault_Reported signal 
received increasing its HopCount by one, only if the re-
ceived signal HopCount is less or equal from HopThresh-
old. 



 
Figure 4: Indirect communication protocol state diagram 

The SearchFault behaviour will be higher in the subsump-
tion architecture, so as to suppress the StigmergicMove be-
haviour, because Fault_Sensed state is more important than 
Fault_Reported. 
When an agent’s vital status is “Active”, it ignores all the 
possible station signals may perceive (Station_Sensed, Sta-
tion_Reported). 
Communication algorithm of SearchFault behaviour: 
SearchFault:

if (inpHValue > NORMAL_WATER_pH) { 
… 
signal.setType() = Fault_Signal 
signal.setHop() = 0 
RFTransmit(signal) 

} 
Communication algorithm of StigmergicMove behaviour: 
StigmergicMove: 

if (signals sensed) { 
    Select most import Fault_Reported signal (less hop count 
and max intensity)   
   … 
    If (selectedSignal.getHop() <=  
        HOP_THRESHOLD)) { 

signal.setType() = Fault_Signal 
signal.setHop() = selectedSignal.getHop() + 1 
RFTransmit(signal) 
} 

} 
Case 2: The vital status of the agent is “Hungry” 
The difference from the first case is that an agent with vital 
status “Hungry” stops searching for faults and starts to 
search for station signals. The states Fault_Sensed and 
Fault_Reported are replaced correspondingly by Sta-
tion_Sensed and Station_Reported and the signal types are 
now different. 
The Station_Sensed state is implemented by the SearchSta-
tion behaviour, which when it gives output (agents sensed 
directly a station’s signal) except the position to move pro-
pose the agent to transmit a Station_Sensed signal (Hop-
Count=0). 
The Station_Reported state is implemented by the Stigmer-
gicMove behaviour, which when it gives output (agents 

sensed station reported signals) except the position to move 
propose the agent to retransmit the Station_Reported signal 
received  increasing its HopCount by one, only if the input 
HopCount is less or equal from HopThreshold. 
The SearchStation behaviour will be higher in the subsump-
tion architecture so as to suppress the SearchFault and 
StigmergicMove behaviours, because “self-preservation 
instinct” is stronger than others and Station_Sensed state is 
more important than Station_Reported. 
When an agent’s vital status is “Hungry”, it ignores all pos-
sible faults and all possible Fault_Reported signals may 
perceive. 
The activation of indirect communication can be done by 
checking the “Communication” check box included in the 
“Agents” tapped pane in “Properties” panel of UI. 

C. Agent Architecture Construction 
The subsumption architecture can be constructed dynami-
cally by the user, who can select any combination of basic 
and/or complex behaviours and to define the suppression 
order. This can be done using the UI “Architecture” con-
struction tapped pane shown in Fig. 5. 

 
Figure 5: Architecture construction tapped pane 

The reason we used this approach was that we wanted the 
simulation system to allow free experimentation on a great 
variety of architecture combinations, so as finally to choose 
the best synthesis that gives the best robustness, in our ef-
fort to solve the problem we dealt with. 
The only behaviour that is default in the agent architecture 
(and cannot be removed by the user) is the Wander behav-
iour, which gives output when no other behaviour gives 
output (suppressed by all others in higher levels). 
There are some architecture constraints encoded in the ap-
plication that automatically include or exclude some behav-
iour from the architecture depending on the parameters set 
by the user. 
After large enough number of experiments (more than 200) 
we constructed the prototype synthesis of subsumption ar-
chitecture shown in Fig. 6, which seems to give the best 
subsumption schema that exploits the aspects of all the be-



haviours described and allow the emergency of more com-
plex behaviour. 

Figure 6: Proposed subsumption architecture schema 
It includes all the behaviours described above. When the 
agents indirect communication is disabled the behaviour 
“StigmergicMove” removed from the architecture schema 
(because is dedicated to indirect communication and as we 
mentioned before implements the “Fault_Sensed” or “Sta-
tion_Sensed” state of the communication protocol) and the 
“SearchStation” and “SearchFault” behaviours output does 
not request “Station_Sensed” or “Fault_Sensed” signal 
transmission correspondingly.  

D. Simulation Branch 
In the body of main frame of the application (Fig. 7) we 
constructed the simulation scene, which includes the static 
objects representing the environment and the dynamic ob-
jects representing the agents and the changes occurred in 
the environment (faults, signals, etc). 
The environment consists of six boxes representing the side 
walls of a cubic petroleum tank and a vertical pipe on the 
centre of the tank where faults can be created by clicking 
with the mouse.  
The agents are represented as cone objects, faults with red 
spheres, fault sensed signals with blue spheres, fault re-
ported signals with green spheres and stations with light 
blue small cubes places on all environment sides in virtual 
grids (which calculated automatically depending on the 
agent population defined). The simulation scene is rotate-
able and can be seen by many different points of view. 
Once a simulation is started (by pressing the “Start” button, 
after the desired system properties were set up), the agents 
population is placed in the virtual environment (randomly 
or starting from stations depending on the value of the cor-
responding parameter) and they start to implement the pre-
defined subsumption architecture reacting with the envi-
ronment (perceive environment and change it implementing 
the enabled behaviour output proposal). 
The most important module of the application is the “Sen-
sor Simulator”, which simulates all the possible environ-
ment senses that an agent can perceive (and not only that).  
In time fashion sends to each agent packages with all the 
possible senses of its local environment: 
• Nearest static obstacle, 
• Nearest kin positions & directions, 

• Current fluid pH,  
• Most important RF and 
• Nearest station position or most important station signal. 
Furthermore “Sensor Simulator” undertakes the mission to: 
• Implement the algorithm of linear reduce of all signals 

life; 
• Clear all the faults that have less than one fault units; 
• Reduce agents battery charge and change agents vital 

status; 
• Auto revive agents when the corresponding indicator is 

on, and 
• Update simulation statistics. 
Another important module of application is that which han-
dles the phenomena of agent collision with the walls or kin. 
We implemented a method that reduces fault sphere volume 
(at the repair procedure) depending on a volume reduce unit 
(VRU) per chemical compound unit (CCU) released by an 
agent. Each fault sphere is characterized by its radius (r) 
and the fault units it includes (FU), which can be defined in 
the “Compound” tapped pane of “Properties” of UI. So the 
volume reduce unit is given by: 

34
3
rV π

=               (3)      and             VVRU
FU

=  (4) 

So, after each chemical compound unit is released for re-
pairing a fault by an agent, a volume reduce unit subtracted 
from current fault volume and the changed fault sphere is 
re-drawn if the remaining volume is greater than zero or 
else the fault disappears.  
We made the assumption that the maximum pH concentra-
tion (14) appears to the centre of a fault sphere with range 
of 0.4 (which volume corresponds to 6.55% of environ-
ments net volume), so all the fault sphere range pH concen-
trations are calculated using this as a base). 
Also, we implemented a method that linearly reduces all 
signals intensity per time interval. Each signal sphere char-
acterized by its radius (r) and life (l), which can be defined 
in the “Compound” tapped pane of “Properties” of UI. So 
the linear reduce unit (LRU) is given by: rLRU

l
=       (5) 

So, after each “Sensor Simulator” wakeup each signal ra-
dius is reduced by one LRU and the signal sphere is re-
drawn if the radius is greater than zero or else the signal 
disappears. 

IV. SCENARIOS & EXPERIMENTS 
We used general experiment scenarios to perform, in order 
to select the appropriate composition of:  
• Agent population,  
• Subsumption architecture behaviour hierarchy and  
• System parameterization. 
In order to achieve a MAS system that repairs faster faults 
using a minimum agent population.  
The basic axis of the scenarios is centralized on the issue of 
the use or not indirect communication and the parameters 
that improve the system performance with communicating 
agents, in order to minimize the randomness of agent’s 
movement so as more agents to participate in repairing pro-



cedure which might reduce agent population and/or agent’s 
chemical substance cargo. 
Before we continue let’s introduce some environment met-
rics (which is also given to “Environment” info pane of UI). 
The “time unit” is relative to wakeups per frame elapsed 
number defined in the CPU behaviour is given to each 
agent.  
Each side of the “tank” is 1.6 Length Units (LU), so an 
agent with a velocity 0.05 LU per time unit needs 32 “time 
units” to cross from one side to the opposite. 

The net fluid environment volume is approximately 4.0915 
(LU)3, so a fault or signal sphere with range 0.4 LU corre-
sponds to 6.55%, with range 0.3 LU to 2.76%, with range 
0.25 LU to 1.6% and with range 0.2 LU to 0.8% of net en-
vironment volume. 
The “life” parameter of signal corresponds to the “time 
units” needed so as to completely fade. 
Now we can introduce the set of parameters we used. 
As far as the agent parameters concern we used: 
1. The MAS population (50, 75, 100), 
2. The chemical load units cargo (5, 10), 
3. The with or without communication indicator and 
4. The velocity (LU per time unit) (0.05, 0.06, 0.07). 
We used these parameters because one of our goals is to 
reduce agent population, and this might be done by increas-
ing the agent’s cargo, or by using indirect communication 
or by increasing their speed.  
We used the tiny sized cone shaped agent, with height=0.01 
LU, base radius 0.0033 LU and volume=1,16355E-07 
(LU)

≈
3 (which corresponds to 0.000028‰ of environments 

net volume). 
As far as the fault parameters concern we used: 
1. The fault sphere range (0.4, 0.3, 0.25), 
2. The max fault sphere fault units (80, 34, 20) and 
3. The number of faults (3, 5, 7). 
We use these parameters to evaluate systems with or with-
out communication using large fault spheres (which might 
be in favor of systems without communication). The fault 

units in combination with agent cargo allow as evaluating 
experiments with faults which needs a number (5, 6, 10) 
agents cooperation to be repaired. And the last one to 
evaluation of agent population in different numbers of envi-
ronment faults presence. 
As far as the signal parameters concern we used: 
1. The Fault_Sensed and Fault_Reported sphere ranges 

(0.3, 0.25, 0.2), 
2. The signal life (time units) (15, 10) and 
3. Hop_Threshold (levels of signal retransmission) (3, 4). 

 
Figure 7: A simulation example 

We use this set of parameters to evaluate the best commu-
nication parameters synthesis, which does not distract the 
agents and allow the system to achieve the goals mention 
above.  
Because all this range of parameters introduce a very large 
number of experiment combinations (3.888), we tried to 
reduce this number by keeping a standard velocity (0.5, 
which evaluated in previous set experiments as a good one, 
which reduce the possibility of agent collisions ) and creat-
ing standard five faults per experiment (which will not 
harm the generality). So, we reduced the combinations to 
432 (Fig. 8). 

 
Figure 8: Experimentation scenarios parameters 

The first general scenario is to find the best two of the 
twelve combinations of communications parameters, using 
a population of 75 agents and fault ranges 0.4 and 0.25 (24 
experiments). Each experiment is executed four times and 
the evaluation is done by using the average of the results. 
The second general scenario concerns the comparison of the 
same set of experiments with and without communication, 



using the best two communication set of parameters. Each 
experiment without communications is executed four times 
and each experiment with communications is executed two 
times (54 experiments) and the evaluation is done by using 
the average of the results. 
As a first criterion for the evaluation we selected the time 
needed for all the faults to be repaired. However, after the 
first experiments we found that this isn’t reliable, due to the 
time threshold introduced by the large amount of “live” 
simulation objects (especially in experiments with commu-
nication). So, we decided to search for new criteria and we 
found the following:  
• The number of sensory packages the system needs for 

the full repair of all faults and  
• The number of sensory packages needed to fade all the 

communication signals after the repair of the last fault 
(the last criterion concerns the evaluation of experi-
ments with communication). 

After the execution and the analysis of the first general sce-
nario set of experiments and having a light reserve happen 
by from the randomness of the experiments, we selected the 
below combination of indirect communication parameters 
(Fig. 9), which gives best performance (fasted repair of all 
faults) to a system with communication: 

 
Figure 9: First general scenario-best two communication parameters 

Using the above best two combinations of indirect commu-
nication parameters we executed and analyzed the second 
general scenario set of experiments and we present the be-
low table (Fig. 10) with the average results of correspond-
ing experiments without and with indirect communication 
and evaluation. In the last two columns we present the per-
centage and new population needed so as a system without 
communication to have the same performance with a corre-
sponding system with indirect communication. 
In each experiment we made a partial evaluation and 
reached to conclusions and finally we evaluated the whole 
amount of experiments which were driven us to the final 
conclusions. 

 
Figure 10: Second general scenario-table with average results of 

corresponding experiments without and with indirect 
communication and evaluation. 

V. CONCLUSIONS 
In the experiments of this paper we focused on the evalua-
tion of a multi-agent system with indirect communication 

against systems without communication but from the whole 
procedure and other interesting conclusions were also 
emerged. Some of them include the following: 
• The validation of robustness against failure (a small 

amount of collisions observed didn’t affect considerably 
the general performance of the system),  

• The validation of what we expected, which is that the 
systems with communication gives a great boost to the 
efficiency, but a suitable selection of communication 
parameters was needed to do so,   

• To cover the lack of efficiency the systems without 
communication, needs a great increase of agents popula-
tion, 

• There is an upper limit on the population that close the 
difference in the efficiency between systems with and 
without communication and increases the collisions,  

• The increase of Hop_Thresold might balance the reduce 
of signal range and/or life, 

• The chemical load of agents combined with the number 
of faults that may be created in the environment, might 
create the need of increase or decrease of the agent’s 
population, 

• The systems with communication can trace easily small 
range faults, 

• Indirect communications reduces the randomness of 
agent’s movements to achieve their objectives.  

The communication generally overloads the system con-
cerning the extra equipment, increase of computational 
power, memory, energy consumption and cost and place 
constraints in the effort of agent’s diminution. 
On the other hand communication allow the reduction of 
agent population and even the agent’s chemical load, be-
cause limits the randomness of their movement and in-
creases the number of agents that participating in the task 
has been assigned. 
Surely, there are intermediate solutions, like the reduction 
of signal range and/or life parallel with the increase of the 
Hop_Threshold, which might need less powered transceiv-
ers but with higher power consumption.  
What is sure, is that the large number of parameters and 
behaviours increases the complexity of evaluation and con-
struction of such systems and requires very big labour, re-
search and experimentation. 
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