
The role of indirect communication in emerging
collective behaviours

Abstract--This work introduces a reactive agent architecture
based on the subsumption scheme incorporating communica-
tion abilities as a basic behaviour block. The aim is to study
and evaluate the emerging collective behaviours and the role
of indirect communication in reactive agent societies situated
in highly dynamic environments. A series of experiments are
presented, focusing at the optimisation of the basic behaviours
synthesis and the exploitation of the indirect communication in
collectively performed tasks. The experiments are conducted
with the simulation of swarm systems applied to a real-life
scenario of the industrial segment.

Index terms-- emergent behaviours, indirect communication,
reactive agents, subsumption architecture.

I. INTRODUCTION
Swarm Intelligence (SI) offers an alternative way of design-
ing intelligent systems, in which autonomy, emergence, and
distributed functioning replace control, pre-programming,
and centralization. SI is defined as the emergent collective
intelligence of groups of simple agents, or in more detail, SI
is the property of a system whereby the collective behav-
iours of (unsophisticated) agents interacting locally with
their environment cause coherent functional global patterns
to emerge [1]. The SI approach emphasizes parallelism,
distributedness, and exploitation of local interactions
among relatively simple agents and the environment they
belong to.
Communication is one of the most common means of inter-
action among intelligent agents. Direct communication is a
purely communicative act, one with the sole purpose of
transmitting information, such as a speech act, or a trans-
mission of a radio message. Although direct communication
is a natural way to communicate, it needs specific mecha-
nisms and protocols to send, receive, and interpret any sig-
nals or messages, and in most cases it needs increased com-
putational resources. On the other hand, in natural systems
as insect societies any observable behaviour and its conse-
quences can be interpreted as a form of communication, and
could be considered as an indirect communication act. This
type of communication is referred to as stigmergic in biol-
ogy literature, as it refers to communication by altering the
state of the environment in a way that will affect the behav-

1 Hellenic Open University, 23 Sahtouri str, 26222, Patras, Hellas
email: tsir@otenet.gr, dimitris.tsiridis@geniki.gr.
2 Research Academic Computer Technology Institute, Uni-versity
Campus, N. Kazatzaki str, 26500, Patras, Hellas, email: {jzaharak,
kameas}@cti.gr

iours of the others for whom the environment is a stimulus
[4]. This means that the environment serves as a medium of
communication.
This type of communication could be applied to an artificial
swarm system consisting of micro scale, unsophisticated
agents with limited computational capabilities. As Bona-
beau et al. notice in [1], stigmergy contributes in a number
of ways:
• In problem solving where the replacement of coordina-

tion through direct communications by indirect interac-
tions helps the design of simple agents and reduced
communication among agents.

• In incremental construction and optimization where a
new solution is constructed from previous solutions.

• In flexibility where, because the changes of the envi-
ronment are treated in a similar way no matter whether
they come from physical or communication actions, the
agents need not be reprogrammed to deal with any par-
ticular change.

The basic factor that influences the complexity of an agent
is the type of the environment on which it is situated and
interacts with in order to achieve its objectives. According
to [5] the most complex environment is the one that is char-
acterised as inaccessible, non-deterministic, non-episodic,
dynamic, and continuous.
The agent architecture is a fundamental issue as its main
role is to provide the necessary interaction between an
agent and its environment: receive the environment sensory
perception input and pass it to the agent’s program, execute
the program and activate the appropriate effectors to change
the environment. Because the symbolic approach of agents
in classic AI wasn’t adequate when they had to operate in
highly environments with time restrictions, the nouvelle AI
researchers proposed alternative approaches for the con-
struction of agents that respond in a timely fashion to their
environment changes, so as their actions to have the ex-
pected results. These unsophisticated agents are referred to
the literature as simple reflex agents [5], or purely reactive
agents [7], thought the latter are more hardware oriented.
The “subsumption architecture” of reactive agents that was
introduced by R. Brooks [2] [2], did not adopt symbolic
representation, nor reasoning mechanisms. The two main
characteristics of this architecture are: a) an agent’s deci-
sion making procedure is realized by a set of task accom-
plishing behaviours, each one can be considered as an ac-
tion function and b) more than one behaviours can be trig-
gered simultaneously, so a selection mechanism of multiple
action proposals must be present. Brooks proposed the ar-
rangement of behaviours in a subsumption hierarchy, where

Dimitrios Tsiridis1 , Ioannis D. Zaharakis2, and Achilles D. Kameas1,2, Member, IEEE

mailto:dimitris.tsiridis@geniki.gr
mailto:kameas%7D@cti.gr

lower behaviours in hierarchy can suppress the higher ones.
The advantages of reactive architectures are: simplicity,
computational tractability, economy, robustness against
failure and elegance [7].
The aim of this work is to study and evaluate the role of
indirect communication (a kind of stigmergy) in the per-
formance of reactive agent societies. As the computational
resources of such type of agents are limited, the overhead of
the communication capability is a critical issue. So, we in-
troduce a subsumption agent architecture that embodies the
communication capability as a basic behaviour allowing the
synthesis of complex behaviours and requires no additional
mechanisms or protocols; instead, it deals with communica-
tion signals as changes of the environment the agent is situ-
ated in. A performance comparison between agent societies
with and without communication ability is presented. Addi-
tionally, issues and situations that boost or reduce the per-
formance of the indirect communication approach are
noted. This is accomplished through several test case simu-
lations for both approaches on a simulated multi agent envi-
ronment.
The next section introduces the case study we were based
upon to develop our work and the approach we adopted.
The section III describes the simulation environment with
brief reference to user interface parameterization, including
the agent behaviours, indirect communication protocol,
agent’s architecture, the simulation branch appearance de-
scription, with a special reference to important functioning
details. The section IV details on the experiment scenarios,
evaluation criteria and the results taken by relevant evalua-
tion test cases. Finally, the section V discusses the results
and the conclusions derived by the experiments and sets
new issues for further investigation

II. CASE STUDY
In order to study, evaluate and exploit the collective phe-
nomena which emerge from local actions of large groups of
elementary agents activated in non-deterministic and dy-
namic environments, we dealt with the following subject
[6]:
“A society consisted of enough population of elementary
autonomous robotic agents is activated in a dynamic envi-
ronment having as an objective the diagnosis and repair
some problematic situations. The agents have specific and
limited capabilities of perceptions and actions, low reason-
ing calculating resources and memory. More specifically
they perceive limited number of environment stimuli and
react in predetermined way to that. Their capabilities coded
by a total of basic behaviours. They do not communicate
directly, but a potential collective action emerges through
local interaction with the rest members of community.”
The main objectives include the following:
• The basic behaviours encoding and their integration in a

suitable architecture schema;
• The creation of an indirect communication mechanism;
• The development of a simulation environment (imple-

mented using Java3D platform);
• The study of the emerging collective phenomena

through a set of experiments; and

• The comparative evaluation of the society performance
using test case scenarios.

To fulfil these objectives we dealt with a problem of the
real world based on a hypothetic scenario [6]:
“In the process of secondary production of petroleum prod-
ucts, pipes are used for the regulation of level of water as
well as a pumping system, using heater treatment units to
separate the two liquids (water & petroleum). The techno-
logical problem it faces is the salt sediments which are ac-
cumulated on the pipe walls (Fig. 1) and they might cause
obstructions and damages on the pumping system.”

Figure 1: Fault Creation

The approach we adopted from Software Engineering point
of view is based on “Swarm Intelligence” approach of
emergent “social” intelligence and from Technical point of
view based on multi-agent systems and the subsumption
agent architecture. The reasons we adopted this approach
are: simplicity, economy, robustness against failure, ele-
gance, impressive results in many applications and suitabil-
ity for dynamic & non-deterministic environments.
A solution to the case study we described is to place a large
enough robotic homogenous agent population into the fluid
environment: tiny sized agents, with low consumption and
computational power and naturally low cost. Each agent is
supplied with a perception system (infrared, pH changes,
and static and moving obstacles recognition sensors), reac-
tive subsumption architecture (with a basic behaviour hier-
archy), a small memory and an actuation system (submarine
navigation, transceiver system and a chemical compound
load).
The agents are moving randomly in the fluid environment
sensing the pH variations by their sensors trying to find pH
disturbances, to reach stochastically the faults, dock and
repair them. The environment can be supplied with refuel
stations so as the agents with low vital status can be refu-
elled. The efficiency of system will be evaluated with or
without indirect communication

III. AGENT ARCHITECTURE AND SIMULATION
ENVIRONMENT

For the purposes of this study, we designed and developed a
standalone multi-agent simulation application running un-
der Windows systems, using GUI for user interface and
Java3D platform for the simulation environment.
We analyzed and coded basic and complex behaviours and
arranged them in a subsumption architecture scheme. We
also implemented a realistic resource-bounded communica-
tion protocol. The main frame of simulation system (Fig. 7)
consist of a set of buttons to start, stop a simulation, set the
system properties and simulation scene appearance and a
set of simulation statistics on a vertical bar on the left side

of the main frame and the 3D simulation scene on the main
body. Also we give a brief reference to interesting function-
ing details.
The user interface we developed covers a great deal of
simulation parameterization concerning:
• Agents: population, agent’s size, chemical compound

load, battery charge, communication, etc.
• Compound: Fault sphere (range, fault units), Signal

Sphere (range, life, hop threshold) and Station (range,
known or unknown location indicator, etc) properties

• Behaviour properties: enabling distances, etc.
• Architecture construction (Fig. 5).
• Environment related information: tank & pipe dimen-

sions and volume, free space, faults and signals envi-
ronment percentage of occupation, etc.

All these parameters can be set in the corresponding tapped
panes in the “Properties” panel (Fig. 2).

Figure 2: Agent properties tapped pane

Furthermore, all simulation default object attributes can be
changed from the UI of the application, by pressing the
button “Appearance” (Fig. 3).

Figure 3: Simulation objects appearance change panel

A. Behaviours
Initially, we analyzed and coded the basic and complex
behaviours of the individual agent. These are related to
movement, task accomplishment, communication, and
emergent behaviours.

1) Movement behaviours
These behaviours are responsible for the navigation of the
agent either as an individual or as a member of a broader
group and are the following.
Wander: No perception input needed. Calculate a random
position to move in 3D space. It is activated if no other be-
haviour gives output (suppressed by all others). The veloc-
ity is calculated randomly between the min and max de-
fined.
Avoid Obstacles: Allows agents to avoid collisions with
static obstacles (walls or pipes). It is activated when static
obstacles are sensed within behaviour enabling distance and
gives as an output a turn upon nearest obstacle position to
move. The velocity is adjusted depending of the distance
from the nearest obstacle (slow down or accelerate).
Avoid Kin: Allows agents to avoid collisions with other
agents. It is activated when nearby agents are sensed and
are within behaviour enabling distance. The behaviour
gives as an output a turn upon nearest kin position to move.
The velocity is adjusted depending on the distance from the
nearest agent (slow down or accelerate).
Follow Kin: Allows agents to follow other agents in the
local surrounding. It is activated when nearby agents are
sensed within behaviour enabling distance and the “eye”
angle is less than 90o. The behaviour gives as an output the
next position to move. The velocity is adjusted trying to
keep a safe distance from leader (slow down or accelerate).
Align: Allows agents to align their direction vector with
other agents in their local environment. It gives as an output
a direction vector which is the normalization of sum of all
vectors of agents within the behaviour enabling distance:

⎟
⎠

⎞
⎜
⎝

⎛
+=′ ∑

=

k

n
n pVVnormalizeV

1
, . (1)

Aggregate: Allows an agent to move to a direction so as to
be part of a group. It gives as an output a position to move
which is the centroid of positions of agents within the be-
haviour enabling distance:

1

k

k
n

p
local centroid

k
==

∑
 (2)

The velocity is adjusted depending on the distance from the
centroid (slow down while reaching the centroid).
Disperse: Allows agents to move to a direction so as
groups are split and agents spread all over the environment.
It’s the opposite behaviour of aggregate and agents try to
avoid the centroid. The velocity is adjusted depending on
the distance from the centroid (accelerate while going away
from centroid).
All these behaviours obey to the constraints that the posi-
tion proposes to an agent to move:
• Must not exceed a turning angle (angle between current

and new direction vector) of 45o and
• The velocity distance (distance between current and new

position to move) must not exceed the maximum veloc-
ity distance defined in UI.
2) Task accomplishment behaviours

These behaviours are related to the tasks an agent individ-
ual can perform and they are placed in a higher priority than

the movement behaviours in the subsumption scheme, as
they reflect the reason the agent has been constructed for as
well as the “self-preservation instincts” of the agent.
Search Station: Activated only when an agent’s vital status
is low. Agent tries to find a refuel station. Refuel stations
positions might be known or transmit a specific signal. In-
cludes embedded behaviours:
Docking Align: Activated when a predefined distance from
a station reached (if station positions are known) or a prede-
fined intensity of station signal sensed (if station positions
are unknown). It gives as an output a direction vector so as
the agent to align its back vertically to the station, using the
agent’s current direction vector, the nearest obstacle posi-
tion and station position (if known) or station signal (if un-
known). A predefined maximum rotation angle per activa-
tion allowed.
Docking Approach: Activated when the docking align-
ment to a station completed. It gives as an output a position
to move backwards, using the distance from nearest obsta-
cle and the distance from the station (known position) or the
station signal (unknown position) until the final dock.
Refuel: When the docking procedure is completed, the
agent starts to recharge its batteries and to reload with the
chemical compound it carries for repairing. This behaviour
gives output until batteries are fully recharged and chemical
compound is fully reloaded.
Search Fault: Activated when pH disturbance is sensed.
The agent tries to move stochastically to the fault by sens-
ing the pH variations. If the current pH value is greater than
previous one sensed (means that an agent is closer to a
fault) then the agent maintains course otherwise it tries to
return to previous position.
Docking Align: Activated when a predefined pH distur-
bance is sensed. It gives as an output a direction vector, so
as the agent to align its back vertically to the fault, using the
agent’s current direction vector and the nearest obstacle
position. A predefined maximum rotation angle per activa-
tion allowed.
Docking Approach: Activated when the docking align-
ment to a fault completed. It gives as an output a position to
move backwards, using the pH variations sensed and the
distance from the nearest obstacle until a predefined mini-
mum dock distance from nearest obstacle reached.
Repair: When the docking procedure is completed, the
agent starts to release a chemical substance which decom-
poses the salt sediments. This behaviour gives output until a
fault completely repaired or the agent’s load becomes
empty.

3) Indirect communication behaviour
This type of behaviour is essentially a movement behav-
iour; however, it is triggered by different type of input sig-
nals, i.e., by signals perceived be the RF sensors.
Stigmergic Move. It is activated when a fault reported sig-
nal is sensed by an agent and gives as an output the position
to move so as the agent will move towards the most impor-
tant signal in its effort to reach faults.

4) Complex behaviour
This behaviour is the result of the synthesis of other basic
behaviours (Fig. 6) and it is placed in the highest priority in

the subsumption scheme, as it is responsible for the agent
safety during navigation.
Safe Wander: It is a complex behaviour which combines
the basic behaviours Avoid Obstacles and Avoid Kin. If both
of them give output then Safe Wander gives as an output a
turn upon the centroid of outputs position to move.

B. Indirect communication protocol
We designed an algorithm and implemented a non-
demanding indirect communication protocol due to agent
resource limitations. This protocol is based on the wireless
protocol IEEE 802.15.4 (ZigΒee). In our model we consider
that an agent may be in one of three distinct states (Fig. 4):
• Wandering: An agent is wandering (not with the mean

of the Wander behaviour) in the environment without
sensing any pH disturbance.

• Fault_Sensed or Station_Sensed: An agent has sensed
a fault via its pH sensors or a station signal via its trans-
ceiver.

• Fault_Reported or Station_Reported: An agent has
sensed via its transceiver a fault or station reported sig-
nal.

Each signal has the following parameters:
• HopCount: Indicates the importance of the signal. A

zero value indicates that an agent directly sensed a fault
or station; values so indicate how far an agent is from a
fault or station and

• HopThreshold: An agent which receives a signal with
HopCount value greater than HopThreshold value, does
not retransmit the signal (namely the maximum level of
signal retransmission).

We have distinguished two cases depending on the vital
status of the agents. An agent’s vital status is “Active”
when its battery charge is above “low battery alert” and has
enough chemical substance cargo, otherwise is “Hungry”.
Case 1: The vital status of the agent is “Active”
Initially an agent is in the Wandering state. If it directly
senses a fault, then enters in Fault_Sensed state and starts to
transmit signal with HopCount=0. If it stops sensing a fault,
then it returns to Wandering state. If it senses fault report-
ing signals then enters in Fault_Reported state and tries to
follow the most important signal (with the less HopCount
and if there are more than one, the one with the highest in-
tensity) while retransmits it increasing the received Hop-
Count by one. If while it is in Fault_Reported state and
directly senses a fault, then enters in Fault_Sensed state and
if it stops sensing any fault reported signals returns to Wan-
dering state.
The Fault_Sensed state is implemented by the SearchFault
behaviour, which when it gives output (the agent sensed
fault) except the position to move propose the agent to
transmit a Fault_Sensed signal (HopCount=0).
 The Fault_Reported state is implemented by the Stigmer-
gicMove behaviour, which when it gives output (the agent
sensed fault reported signal) except the position to move
propose the agent to retransmit the Fault_Reported signal
received increasing its HopCount by one, only if the re-
ceived signal HopCount is less or equal from HopThresh-
old.

Figure 4: Indirect communication protocol state diagram

The SearchFault behaviour will be higher in the subsump-
tion architecture, so as to suppress the StigmergicMove be-
haviour, because Fault_Sensed state is more important than
Fault_Reported.
When an agent’s vital status is “Active”, it ignores all the
possible station signals may perceive (Station_Sensed, Sta-
tion_Reported).
Communication algorithm of SearchFault behaviour:
SearchFault:

if (inpHValue > NORMAL_WATER_pH) {
…
signal.setType() = Fault_Signal
signal.setHop() = 0
RFTransmit(signal)

}
Communication algorithm of StigmergicMove behaviour:
StigmergicMove:

if (signals sensed) {
 Select most import Fault_Reported signal (less hop count
and max intensity)
 …
 If (selectedSignal.getHop() <=
 HOP_THRESHOLD)) {

signal.setType() = Fault_Signal
signal.setHop() = selectedSignal.getHop() + 1
RFTransmit(signal)
}

}
Case 2: The vital status of the agent is “Hungry”
The difference from the first case is that an agent with vital
status “Hungry” stops searching for faults and starts to
search for station signals. The states Fault_Sensed and
Fault_Reported are replaced correspondingly by Sta-
tion_Sensed and Station_Reported and the signal types are
now different.
The Station_Sensed state is implemented by the SearchSta-
tion behaviour, which when it gives output (agents sensed
directly a station’s signal) except the position to move pro-
pose the agent to transmit a Station_Sensed signal (Hop-
Count=0).
The Station_Reported state is implemented by the Stigmer-
gicMove behaviour, which when it gives output (agents

sensed station reported signals) except the position to move
propose the agent to retransmit the Station_Reported signal
received increasing its HopCount by one, only if the input
HopCount is less or equal from HopThreshold.
The SearchStation behaviour will be higher in the subsump-
tion architecture so as to suppress the SearchFault and
StigmergicMove behaviours, because “self-preservation
instinct” is stronger than others and Station_Sensed state is
more important than Station_Reported.
When an agent’s vital status is “Hungry”, it ignores all pos-
sible faults and all possible Fault_Reported signals may
perceive.
The activation of indirect communication can be done by
checking the “Communication” check box included in the
“Agents” tapped pane in “Properties” panel of UI.

C. Agent Architecture Construction
The subsumption architecture can be constructed dynami-
cally by the user, who can select any combination of basic
and/or complex behaviours and to define the suppression
order. This can be done using the UI “Architecture” con-
struction tapped pane shown in Fig. 5.

Figure 5: Architecture construction tapped pane

The reason we used this approach was that we wanted the
simulation system to allow free experimentation on a great
variety of architecture combinations, so as finally to choose
the best synthesis that gives the best robustness, in our ef-
fort to solve the problem we dealt with.
The only behaviour that is default in the agent architecture
(and cannot be removed by the user) is the Wander behav-
iour, which gives output when no other behaviour gives
output (suppressed by all others in higher levels).
There are some architecture constraints encoded in the ap-
plication that automatically include or exclude some behav-
iour from the architecture depending on the parameters set
by the user.
After large enough number of experiments (more than 200)
we constructed the prototype synthesis of subsumption ar-
chitecture shown in Fig. 6, which seems to give the best
subsumption schema that exploits the aspects of all the be-

haviours described and allow the emergency of more com-
plex behaviour.

Figure 6: Proposed subsumption architecture schema
It includes all the behaviours described above. When the
agents indirect communication is disabled the behaviour
“StigmergicMove” removed from the architecture schema
(because is dedicated to indirect communication and as we
mentioned before implements the “Fault_Sensed” or “Sta-
tion_Sensed” state of the communication protocol) and the
“SearchStation” and “SearchFault” behaviours output does
not request “Station_Sensed” or “Fault_Sensed” signal
transmission correspondingly.

D. Simulation Branch
In the body of main frame of the application (Fig. 7) we
constructed the simulation scene, which includes the static
objects representing the environment and the dynamic ob-
jects representing the agents and the changes occurred in
the environment (faults, signals, etc).
The environment consists of six boxes representing the side
walls of a cubic petroleum tank and a vertical pipe on the
centre of the tank where faults can be created by clicking
with the mouse.
The agents are represented as cone objects, faults with red
spheres, fault sensed signals with blue spheres, fault re-
ported signals with green spheres and stations with light
blue small cubes places on all environment sides in virtual
grids (which calculated automatically depending on the
agent population defined). The simulation scene is rotate-
able and can be seen by many different points of view.
Once a simulation is started (by pressing the “Start” button,
after the desired system properties were set up), the agents
population is placed in the virtual environment (randomly
or starting from stations depending on the value of the cor-
responding parameter) and they start to implement the pre-
defined subsumption architecture reacting with the envi-
ronment (perceive environment and change it implementing
the enabled behaviour output proposal).
The most important module of the application is the “Sen-
sor Simulator”, which simulates all the possible environ-
ment senses that an agent can perceive (and not only that).
In time fashion sends to each agent packages with all the
possible senses of its local environment:
• Nearest static obstacle,
• Nearest kin positions & directions,

• Current fluid pH,
• Most important RF and
• Nearest station position or most important station signal.
Furthermore “Sensor Simulator” undertakes the mission to:
• Implement the algorithm of linear reduce of all signals

life;
• Clear all the faults that have less than one fault units;
• Reduce agents battery charge and change agents vital

status;
• Auto revive agents when the corresponding indicator is

on, and
• Update simulation statistics.
Another important module of application is that which han-
dles the phenomena of agent collision with the walls or kin.
We implemented a method that reduces fault sphere volume
(at the repair procedure) depending on a volume reduce unit
(VRU) per chemical compound unit (CCU) released by an
agent. Each fault sphere is characterized by its radius (r)
and the fault units it includes (FU), which can be defined in
the “Compound” tapped pane of “Properties” of UI. So the
volume reduce unit is given by:

34
3
rV π

= (3) and VVRU
FU

= (4)

So, after each chemical compound unit is released for re-
pairing a fault by an agent, a volume reduce unit subtracted
from current fault volume and the changed fault sphere is
re-drawn if the remaining volume is greater than zero or
else the fault disappears.
We made the assumption that the maximum pH concentra-
tion (14) appears to the centre of a fault sphere with range
of 0.4 (which volume corresponds to 6.55% of environ-
ments net volume), so all the fault sphere range pH concen-
trations are calculated using this as a base).
Also, we implemented a method that linearly reduces all
signals intensity per time interval. Each signal sphere char-
acterized by its radius (r) and life (l), which can be defined
in the “Compound” tapped pane of “Properties” of UI. So
the linear reduce unit (LRU) is given by: rLRU

l
= (5)

So, after each “Sensor Simulator” wakeup each signal ra-
dius is reduced by one LRU and the signal sphere is re-
drawn if the radius is greater than zero or else the signal
disappears.

IV. SCENARIOS & EXPERIMENTS
We used general experiment scenarios to perform, in order
to select the appropriate composition of:
• Agent population,
• Subsumption architecture behaviour hierarchy and
• System parameterization.
In order to achieve a MAS system that repairs faster faults
using a minimum agent population.
The basic axis of the scenarios is centralized on the issue of
the use or not indirect communication and the parameters
that improve the system performance with communicating
agents, in order to minimize the randomness of agent’s
movement so as more agents to participate in repairing pro-

cedure which might reduce agent population and/or agent’s
chemical substance cargo.
Before we continue let’s introduce some environment met-
rics (which is also given to “Environment” info pane of UI).
The “time unit” is relative to wakeups per frame elapsed
number defined in the CPU behaviour is given to each
agent.
Each side of the “tank” is 1.6 Length Units (LU), so an
agent with a velocity 0.05 LU per time unit needs 32 “time
units” to cross from one side to the opposite.

The net fluid environment volume is approximately 4.0915
(LU)3, so a fault or signal sphere with range 0.4 LU corre-
sponds to 6.55%, with range 0.3 LU to 2.76%, with range
0.25 LU to 1.6% and with range 0.2 LU to 0.8% of net en-
vironment volume.
The “life” parameter of signal corresponds to the “time
units” needed so as to completely fade.
Now we can introduce the set of parameters we used.
As far as the agent parameters concern we used:
1. The MAS population (50, 75, 100),
2. The chemical load units cargo (5, 10),
3. The with or without communication indicator and
4. The velocity (LU per time unit) (0.05, 0.06, 0.07).
We used these parameters because one of our goals is to
reduce agent population, and this might be done by increas-
ing the agent’s cargo, or by using indirect communication
or by increasing their speed.
We used the tiny sized cone shaped agent, with height=0.01
LU, base radius 0.0033 LU and volume=1,16355E-07
(LU)

≈
3 (which corresponds to 0.000028‰ of environments

net volume).
As far as the fault parameters concern we used:
1. The fault sphere range (0.4, 0.3, 0.25),
2. The max fault sphere fault units (80, 34, 20) and
3. The number of faults (3, 5, 7).
We use these parameters to evaluate systems with or with-
out communication using large fault spheres (which might
be in favor of systems without communication). The fault

units in combination with agent cargo allow as evaluating
experiments with faults which needs a number (5, 6, 10)
agents cooperation to be repaired. And the last one to
evaluation of agent population in different numbers of envi-
ronment faults presence.
As far as the signal parameters concern we used:
1. The Fault_Sensed and Fault_Reported sphere ranges

(0.3, 0.25, 0.2),
2. The signal life (time units) (15, 10) and
3. Hop_Threshold (levels of signal retransmission) (3, 4).

Figure 7: A simulation example

We use this set of parameters to evaluate the best commu-
nication parameters synthesis, which does not distract the
agents and allow the system to achieve the goals mention
above.
Because all this range of parameters introduce a very large
number of experiment combinations (3.888), we tried to
reduce this number by keeping a standard velocity (0.5,
which evaluated in previous set experiments as a good one,
which reduce the possibility of agent collisions) and creat-
ing standard five faults per experiment (which will not
harm the generality). So, we reduced the combinations to
432 (Fig. 8).

Figure 8: Experimentation scenarios parameters

The first general scenario is to find the best two of the
twelve combinations of communications parameters, using
a population of 75 agents and fault ranges 0.4 and 0.25 (24
experiments). Each experiment is executed four times and
the evaluation is done by using the average of the results.
The second general scenario concerns the comparison of the
same set of experiments with and without communication,

using the best two communication set of parameters. Each
experiment without communications is executed four times
and each experiment with communications is executed two
times (54 experiments) and the evaluation is done by using
the average of the results.
As a first criterion for the evaluation we selected the time
needed for all the faults to be repaired. However, after the
first experiments we found that this isn’t reliable, due to the
time threshold introduced by the large amount of “live”
simulation objects (especially in experiments with commu-
nication). So, we decided to search for new criteria and we
found the following:
• The number of sensory packages the system needs for

the full repair of all faults and
• The number of sensory packages needed to fade all the

communication signals after the repair of the last fault
(the last criterion concerns the evaluation of experi-
ments with communication).

After the execution and the analysis of the first general sce-
nario set of experiments and having a light reserve happen
by from the randomness of the experiments, we selected the
below combination of indirect communication parameters
(Fig. 9), which gives best performance (fasted repair of all
faults) to a system with communication:

Figure 9: First general scenario-best two communication parameters

Using the above best two combinations of indirect commu-
nication parameters we executed and analyzed the second
general scenario set of experiments and we present the be-
low table (Fig. 10) with the average results of correspond-
ing experiments without and with indirect communication
and evaluation. In the last two columns we present the per-
centage and new population needed so as a system without
communication to have the same performance with a corre-
sponding system with indirect communication.
In each experiment we made a partial evaluation and
reached to conclusions and finally we evaluated the whole
amount of experiments which were driven us to the final
conclusions.

Figure 10: Second general scenario-table with average results of

corresponding experiments without and with indirect
communication and evaluation.

V. CONCLUSIONS
In the experiments of this paper we focused on the evalua-
tion of a multi-agent system with indirect communication

against systems without communication but from the whole
procedure and other interesting conclusions were also
emerged. Some of them include the following:
• The validation of robustness against failure (a small

amount of collisions observed didn’t affect considerably
the general performance of the system),

• The validation of what we expected, which is that the
systems with communication gives a great boost to the
efficiency, but a suitable selection of communication
parameters was needed to do so,

• To cover the lack of efficiency the systems without
communication, needs a great increase of agents popula-
tion,

• There is an upper limit on the population that close the
difference in the efficiency between systems with and
without communication and increases the collisions,

• The increase of Hop_Thresold might balance the reduce
of signal range and/or life,

• The chemical load of agents combined with the number
of faults that may be created in the environment, might
create the need of increase or decrease of the agent’s
population,

• The systems with communication can trace easily small
range faults,

• Indirect communications reduces the randomness of
agent’s movements to achieve their objectives.

The communication generally overloads the system con-
cerning the extra equipment, increase of computational
power, memory, energy consumption and cost and place
constraints in the effort of agent’s diminution.
On the other hand communication allow the reduction of
agent population and even the agent’s chemical load, be-
cause limits the randomness of their movement and in-
creases the number of agents that participating in the task
has been assigned.
Surely, there are intermediate solutions, like the reduction
of signal range and/or life parallel with the increase of the
Hop_Threshold, which might need less powered transceiv-
ers but with higher power consumption.
What is sure, is that the large number of parameters and
behaviours increases the complexity of evaluation and con-
struction of such systems and requires very big labour, re-
search and experimentation.

References
[1] Bonabeau, E., Dorigo, M., and Theraulaz, G. Swarm Intelligence:

From Natural to Artificial Systems. Oxford University Press, 1999.
[2] Brooks, R, A. A robust layered control system for a mobile robot.

IEEE Journal of Robotics and Automation, 2(1): 14–23, 1986.
[3] Brooks, R. A. Robot: The future of flesh and machines. London:

Penguin Books, 2002
[4] Grasse, P-P. La Reconstruction du nid et les Coordinations Inter-

Individuelles chez Bellicositermes Natalensis et Cubitermes sp. La
theorie de la Stigmergie: Essai d'interpretation du Comportement des
Termites Constructeurs. Insectes Sociaux, 6:41 81, 1959.

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 2nd edition, 2003

[6] SOCIAL Project, IST-2001-38911, http://www.socialspike.net/
[7] Wooldridge, M. Intelligent Agents. In G. Weiss (Ed.), Multiagent

Systems: A Modern Approach to Distributed Artificial Intelligence
(pp. 27-77). MIT Press, 1999.

http://www.socialspike.net/

	I. Introduction
	II. Case Study
	III. Agent Architecture and Simulation Environment
	A. Behaviours
	1) Movement behaviours
	2) Task accomplishment behaviours
	3) Indirect communication behaviour
	4) Complex behaviour

	B. Indirect communication protocol
	C. Agent Architecture Construction
	D. Simulation Branch
	IV. Scenarios & Experiments
	V. Conclusions

